4. Median of Two Sorted Arrays

Source code notebook Author Update time

Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.

Follow up: The overall run time complexity should be O(log (m+n)).

Example 1:

Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.

Example 2:

Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.

Example 3:

Input: nums1 = [0,0], nums2 = [0,0]
Output: 0.00000

Example 4:

Input: nums1 = [], nums2 = [1]
Output: 1.00000

Example 5:

Input: nums1 = [2], nums2 = []
Output: 2.00000

Constraints:

  • nums1.length == m
  • nums2.length == n
  • 0 <= m <= 1000
  • 0 <= n <= 1000
  • 1 <= m + n <= 2000
  • -106 <= nums1[i], nums2[i] <= 106
# @lc code=start
using LeetCode

function find_median_sorted_arrays(nums1::Vector{Int}, nums2::Vector{Int})::Float64
    n = length(nums1) + length(nums2)
    isodd(n) ? nth(nums1, nums2, n ÷ 2 + 1) :
    (nth(nums1, nums2, n ÷ 2) + nth(nums1, nums2, n ÷ 2 + 1)) / 2
end

function nth(a, b, k)
    isempty(a) && return b[k]
    isempty(b) && return a[k]
    ia, ib = cld(length(a), 2), cld(length(b), 2)
    ma, mb = a[ia], b[ib]
    if ia + ib <= k
        ma > mb ? nth(a, @view(b[(ib + 1):end]), k - ib) : ## we can safely ignore the first half in b
        nth(@view(a[(ia + 1):end]), b, k - ia)
    else
        ma > mb ? nth(@view(a[1:(ia - 1)]), b, k) : nth(a, @view(b[1:(ib - 1)]), k)
    end
end
# @lc code=end
nth (generic function with 1 method)

This page was generated using DemoCards.jl and Literate.jl.