数组
构造函数与类型
Core.AbstractArray — TypeAbstractArray{T,N}Supertype for N-dimensional arrays (or array-like types) with elements of type T. Array and other types are subtypes of this. See the manual section on the AbstractArray interface.
See also: AbstractVector, AbstractMatrix, eltype, ndims.
Base.AbstractVector — TypeAbstractVector{T}Supertype for one-dimensional arrays (or array-like types) with elements of type T. Alias for AbstractArray{T,1}.
Base.AbstractMatrix — TypeAbstractMatrix{T}Supertype for two-dimensional arrays (or array-like types) with elements of type T. Alias for AbstractArray{T,2}.
Base.AbstractVecOrMat — TypeAbstractVecOrMat{T}Union type of AbstractVector{T} and AbstractMatrix{T}.
Core.Array — TypeArray{T,N} <: AbstractArray{T,N}N-dimensional dense array with elements of type T.
Core.Array — MethodArray{T}(undef, dims)
Array{T,N}(undef, dims)Construct an uninitialized N-dimensional Array containing elements of type T. N can either be supplied explicitly, as in Array{T,N}(undef, dims), or be determined by the length or number of dims. dims may be a tuple or a series of integer arguments corresponding to the lengths in each dimension. If the rank N is supplied explicitly, then it must match the length or number of dims. Here undef is the UndefInitializer.
Examples
julia> A = Array{Float64, 2}(undef, 2, 3) # N given explicitly
2×3 Matrix{Float64}:
6.90198e-310 6.90198e-310 6.90198e-310
6.90198e-310 6.90198e-310 0.0
julia> B = Array{Float64}(undef, 4) # N determined by the input
4-element Vector{Float64}:
2.360075077e-314
NaN
2.2671131793e-314
2.299821756e-314
julia> similar(B, 2, 4, 1) # use typeof(B), and the given size
2×4×1 Array{Float64, 3}:
[:, :, 1] =
2.26703e-314 2.26708e-314 0.0 2.80997e-314
0.0 2.26703e-314 2.26708e-314 0.0Core.Array — MethodArray{T}(nothing, dims)
Array{T,N}(nothing, dims)Construct an N-dimensional Array containing elements of type T, initialized with nothing entries. Element type T must be able to hold these values, i.e. Nothing <: T.
Examples
julia> Array{Union{Nothing, String}}(nothing, 2)
2-element Vector{Union{Nothing, String}}:
nothing
nothing
julia> Array{Union{Nothing, Int}}(nothing, 2, 3)
2×3 Matrix{Union{Nothing, Int64}}:
nothing nothing nothing
nothing nothing nothingCore.Array — MethodArray{T}(missing, dims)
Array{T,N}(missing, dims)Construct an N-dimensional Array containing elements of type T, initialized with missing entries. Element type T must be able to hold these values, i.e. Missing <: T.
Examples
julia> Array{Union{Missing, String}}(missing, 2)
2-element Vector{Union{Missing, String}}:
missing
missing
julia> Array{Union{Missing, Int}}(missing, 2, 3)
2×3 Matrix{Union{Missing, Int64}}:
missing missing missing
missing missing missingCore.UndefInitializer — TypeUndefInitializerSingleton type used in array initialization, indicating the array-constructor-caller would like an uninitialized array. See also undef, an alias for UndefInitializer().
Examples
julia> Array{Float64, 1}(UndefInitializer(), 3)
3-element Array{Float64, 1}:
2.2752528595e-314
2.202942107e-314
2.275252907e-314Core.undef — ConstantundefAlias for UndefInitializer(), which constructs an instance of the singleton type UndefInitializer, used in array initialization to indicate the array-constructor-caller would like an uninitialized array.
Examples
julia> Array{Float64, 1}(undef, 3)
3-element Vector{Float64}:
2.2752528595e-314
2.202942107e-314
2.275252907e-314Base.Vector — TypeVector{T} <: AbstractVector{T}One-dimensional dense array with elements of type T, often used to represent a mathematical vector. Alias for Array{T,1}.
Base.Vector — MethodVector{T}(undef, n)Construct an uninitialized Vector{T} of length n.
Examples
julia> Vector{Float64}(undef, 3)
3-element Array{Float64, 1}:
6.90966e-310
6.90966e-310
6.90966e-310Base.Vector — MethodVector{T}(nothing, m)Construct a Vector{T} of length m, initialized with nothing entries. Element type T must be able to hold these values, i.e. Nothing <: T.
Examples
julia> Vector{Union{Nothing, String}}(nothing, 2)
2-element Vector{Union{Nothing, String}}:
nothing
nothingBase.Vector — MethodVector{T}(missing, m)Construct a Vector{T} of length m, initialized with missing entries. Element type T must be able to hold these values, i.e. Missing <: T.
Examples
julia> Vector{Union{Missing, String}}(missing, 2)
2-element Vector{Union{Missing, String}}:
missing
missingBase.Matrix — TypeMatrix{T} <: AbstractMatrix{T}Two-dimensional dense array with elements of type T, often used to represent a mathematical matrix. Alias for Array{T,2}.
See also fill, zeros, undef and similar for creating matrices.
Base.Matrix — MethodMatrix{T}(undef, m, n)Construct an uninitialized Matrix{T} of size m×n.
Examples
julia> Matrix{Float64}(undef, 2, 3)
2×3 Array{Float64, 2}:
2.36365e-314 2.28473e-314 5.0e-324
2.26704e-314 2.26711e-314 NaN
julia> similar(ans, Int32, 2, 2)
2×2 Matrix{Int32}:
490537216 1277177453
1 1936748399Base.Matrix — MethodMatrix{T}(nothing, m, n)Construct a Matrix{T} of size m×n, initialized with nothing entries. Element type T must be able to hold these values, i.e. Nothing <: T.
Examples
julia> Matrix{Union{Nothing, String}}(nothing, 2, 3)
2×3 Matrix{Union{Nothing, String}}:
nothing nothing nothing
nothing nothing nothingBase.Matrix — MethodMatrix{T}(missing, m, n)Construct a Matrix{T} of size m×n, initialized with missing entries. Element type T must be able to hold these values, i.e. Missing <: T.
Examples
julia> Matrix{Union{Missing, String}}(missing, 2, 3)
2×3 Matrix{Union{Missing, String}}:
missing missing missing
missing missing missingBase.VecOrMat — TypeVecOrMat{T}Union type of Vector{T} and Matrix{T} which allows functions to accept either a Matrix or a Vector.
Examples
julia> Vector{Float64} <: VecOrMat{Float64}
true
julia> Matrix{Float64} <: VecOrMat{Float64}
true
julia> Array{Float64, 3} <: VecOrMat{Float64}
falseCore.DenseArray — TypeDenseArray{T, N} <: AbstractArray{T,N}N-dimensional dense array with elements of type T. The elements of a dense array are stored contiguously in memory.
Base.DenseVector — TypeDenseVector{T}One-dimensional DenseArray with elements of type T. Alias for DenseArray{T,1}.
Base.DenseMatrix — TypeDenseMatrix{T}Two-dimensional DenseArray with elements of type T. Alias for DenseArray{T,2}.
Base.DenseVecOrMat — TypeDenseVecOrMat{T}Union type of DenseVector{T} and DenseMatrix{T}.
Base.StridedArray — TypeStridedArray{T, N}A hard-coded Union of common array types that follow the strided array interface, with elements of type T and N dimensions.
If A is a StridedArray, then its elements are stored in memory with offsets, which may vary between dimensions but are constant within a dimension. For example, A could have stride 2 in dimension 1, and stride 3 in dimension 2. Incrementing A along dimension d jumps in memory by [stride(A, d)] slots. Strided arrays are particularly important and useful because they can sometimes be passed directly as pointers to foreign language libraries like BLAS.
Base.StridedVector — TypeStridedVector{T}One dimensional StridedArray with elements of type T.
Base.StridedMatrix — TypeStridedMatrix{T}Two dimensional StridedArray with elements of type T.
Base.StridedVecOrMat — TypeStridedVecOrMat{T}Union type of StridedVector and StridedMatrix with elements of type T.
Base.Slices — TypeSlices{P,SM,AX,S,N} <: AbstractSlices{S,N}An AbstractArray of slices into a parent array over specified dimension(s), returning views that select all the data from the other dimension(s).
These should typically be constructed by eachslice, eachcol or eachrow.
parent(s::Slices) will return the parent array.
Base.RowSlices — TypeRowSlices{M,AX,S}A special case of Slices that is a vector of row slices of a matrix, as constructed by eachrow.
parent can be used to get the underlying matrix.
Base.ColumnSlices — TypeColumnSlices{M,AX,S}A special case of Slices that is a vector of column slices of a matrix, as constructed by eachcol.
parent can be used to get the underlying matrix.
Base.getindex — Methodgetindex(type[, elements...])Construct a 1-d array of the specified type. This is usually called with the syntax Type[]. Element values can be specified using Type[a,b,c,...].
Examples
julia> Int8[1, 2, 3]
3-element Vector{Int8}:
1
2
3
julia> getindex(Int8, 1, 2, 3)
3-element Vector{Int8}:
1
2
3Base.zeros — Functionzeros([T=Float64,] dims::Tuple)
zeros([T=Float64,] dims...)Create an Array, with element type T, of all zeros with size specified by dims. See also fill, ones, zero.
Examples
julia> zeros(1)
1-element Vector{Float64}:
0.0
julia> zeros(Int8, 2, 3)
2×3 Matrix{Int8}:
0 0 0
0 0 0Base.ones — Functionones([T=Float64,] dims::Tuple)
ones([T=Float64,] dims...)Create an Array, with element type T, of all ones with size specified by dims. See also fill, zeros.
Examples
julia> ones(1,2)
1×2 Matrix{Float64}:
1.0 1.0
julia> ones(ComplexF64, 2, 3)
2×3 Matrix{ComplexF64}:
1.0+0.0im 1.0+0.0im 1.0+0.0im
1.0+0.0im 1.0+0.0im 1.0+0.0imBase.BitArray — TypeBitArray{N} <: AbstractArray{Bool, N}Space-efficient N-dimensional boolean array, using just one bit for each boolean value.
BitArrays pack up to 64 values into every 8 bytes, resulting in an 8x space efficiency over Array{Bool, N} and allowing some operations to work on 64 values at once.
By default, Julia returns BitArrays from broadcasting operations that generate boolean elements (including dotted-comparisons like .==) as well as from the functions trues and falses.
Due to its packed storage format, concurrent access to the elements of a BitArray where at least one of them is a write is not thread-safe.
Base.BitArray — MethodBitArray(undef, dims::Integer...)
BitArray{N}(undef, dims::NTuple{N,Int})Construct an undef BitArray with the given dimensions. Behaves identically to the Array constructor. See undef.
Examples
julia> BitArray(undef, 2, 2)
2×2 BitMatrix:
0 0
0 0
julia> BitArray(undef, (3, 1))
3×1 BitMatrix:
0
0
0Base.BitArray — MethodBitArray(itr)Construct a BitArray generated by the given iterable object. The shape is inferred from the itr object.
Examples
julia> BitArray([1 0; 0 1])
2×2 BitMatrix:
1 0
0 1
julia> BitArray(x+y == 3 for x = 1:2, y = 1:3)
2×3 BitMatrix:
0 1 0
1 0 0
julia> BitArray(x+y == 3 for x = 1:2 for y = 1:3)
6-element BitVector:
0
1
0
1
0
0Base.trues — Functiontrues(dims)Create a BitArray with all values set to true.
Examples
julia> trues(2,3)
2×3 BitMatrix:
1 1 1
1 1 1Base.falses — Functionfalses(dims)Create a BitArray with all values set to false.
Examples
julia> falses(2,3)
2×3 BitMatrix:
0 0 0
0 0 0Base.fill — Functionfill(value, dims::Tuple)
fill(value, dims...)Create an array of size dims with every location set to value.
For example, fill(1.0, (5,5)) returns a 5×5 array of floats, with 1.0 in every location of the array.
The dimension lengths dims may be specified as either a tuple or a sequence of arguments. An N-length tuple or N arguments following the value specify an N-dimensional array. Thus, a common idiom for creating a zero-dimensional array with its only location set to x is fill(x).
Every location of the returned array is set to (and is thus === to) the value that was passed; this means that if the value is itself modified, all elements of the filled array will reflect that modification because they're still that very value. This is of no concern with fill(1.0, (5,5)) as the value 1.0 is immutable and cannot itself be modified, but can be unexpected with mutable values like — most commonly — arrays. For example, fill([], 3) places the very same empty array in all three locations of the returned vector:
julia> v = fill([], 3)
3-element Vector{Vector{Any}}:
[]
[]
[]
julia> v[1] === v[2] === v[3]
true
julia> value = v[1]
Any[]
julia> push!(value, 867_5309)
1-element Vector{Any}:
8675309
julia> v
3-element Vector{Vector{Any}}:
[8675309]
[8675309]
[8675309]To create an array of many independent inner arrays, use a comprehension instead. This creates a new and distinct array on each iteration of the loop:
julia> v2 = [[] for _ in 1:3]
3-element Vector{Vector{Any}}:
[]
[]
[]
julia> v2[1] === v2[2] === v2[3]
false
julia> push!(v2[1], 8675309)
1-element Vector{Any}:
8675309
julia> v2
3-element Vector{Vector{Any}}:
[8675309]
[]
[]See also: fill!, zeros, ones, similar.
Examples
julia> fill(1.0, (2,3))
2×3 Matrix{Float64}:
1.0 1.0 1.0
1.0 1.0 1.0
julia> fill(42)
0-dimensional Array{Int64, 0}:
42
julia> A = fill(zeros(2), 2) # sets both elements to the same [0.0, 0.0] vector
2-element Vector{Vector{Float64}}:
[0.0, 0.0]
[0.0, 0.0]
julia> A[1][1] = 42; # modifies the filled value to be [42.0, 0.0]
julia> A # both A[1] and A[2] are the very same vector
2-element Vector{Vector{Float64}}:
[42.0, 0.0]
[42.0, 0.0]Base.fill! — Functionfill!(A, x)Fill array A with the value x. If x is an object reference, all elements will refer to the same object. fill!(A, Foo()) will return A filled with the result of evaluating Foo() once.
Examples
julia> A = zeros(2,3)
2×3 Matrix{Float64}:
0.0 0.0 0.0
0.0 0.0 0.0
julia> fill!(A, 2.)
2×3 Matrix{Float64}:
2.0 2.0 2.0
2.0 2.0 2.0
julia> a = [1, 1, 1]; A = fill!(Vector{Vector{Int}}(undef, 3), a); a[1] = 2; A
3-element Vector{Vector{Int64}}:
[2, 1, 1]
[2, 1, 1]
[2, 1, 1]
julia> x = 0; f() = (global x += 1; x); fill!(Vector{Int}(undef, 3), f())
3-element Vector{Int64}:
1
1
1Base.empty — Functionempty(x::Tuple)Return an empty tuple, ().
empty(v::AbstractVector, [eltype])Create an empty vector similar to v, optionally changing the eltype.
See also: empty!, isempty, isassigned.
Examples
julia> empty([1.0, 2.0, 3.0])
Float64[]
julia> empty([1.0, 2.0, 3.0], String)
String[]empty(a::AbstractDict, [index_type=keytype(a)], [value_type=valtype(a)])Create an empty AbstractDict container which can accept indices of type index_type and values of type value_type. The second and third arguments are optional and default to the input's keytype and valtype, respectively. (If only one of the two types is specified, it is assumed to be the value_type, and the index_type we default to keytype(a)).
Custom AbstractDict subtypes may choose which specific dictionary type is best suited to return for the given index and value types, by specializing on the three-argument signature. The default is to return an empty Dict.
Base.similar — Functionsimilar(A::AbstractSparseMatrixCSC{Tv,Ti}, [::Type{TvNew}, ::Type{TiNew}, m::Integer, n::Integer]) where {Tv,Ti}Create an uninitialized mutable array with the given element type, index type, and size, based upon the given source SparseMatrixCSC. The new sparse matrix maintains the structure of the original sparse matrix, except in the case where dimensions of the output matrix are different from the output.
The output matrix has zeros in the same locations as the input, but uninitialized values for the nonzero locations.
similar(array, [element_type=eltype(array)], [dims=size(array)])Create an uninitialized mutable array with the given element type and size, based upon the given source array. The second and third arguments are both optional, defaulting to the given array's eltype and size. The dimensions may be specified either as a single tuple argument or as a series of integer arguments.
Custom AbstractArray subtypes may choose which specific array type is best-suited to return for the given element type and dimensionality. If they do not specialize this method, the default is an Array{element_type}(undef, dims...).
For example, similar(1:10, 1, 4) returns an uninitialized Array{Int,2} since ranges are neither mutable nor support 2 dimensions:
julia> similar(1:10, 1, 4)
1×4 Matrix{Int64}:
4419743872 4374413872 4419743888 0Conversely, similar(trues(10,10), 2) returns an uninitialized BitVector with two elements since BitArrays are both mutable and can support 1-dimensional arrays:
julia> similar(trues(10,10), 2)
2-element BitVector:
0
0Since BitArrays can only store elements of type Bool, however, if you request a different element type it will create a regular Array instead:
julia> similar(falses(10), Float64, 2, 4)
2×4 Matrix{Float64}:
2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314
2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314See also: undef, isassigned.
similar(storagetype, axes)Create an uninitialized mutable array analogous to that specified by storagetype, but with axes specified by the last argument.
Examples:
similar(Array{Int}, axes(A))creates an array that "acts like" an Array{Int} (and might indeed be backed by one), but which is indexed identically to A. If A has conventional indexing, this will be identical to Array{Int}(undef, size(A)), but if A has unconventional indexing then the indices of the result will match A.
similar(BitArray, (axes(A, 2),))would create a 1-dimensional logical array whose indices match those of the columns of A.
基础函数
Base.ndims — Functionndims(A::AbstractArray) -> IntegerReturn the number of dimensions of A.
Examples
julia> A = fill(1, (3,4,5));
julia> ndims(A)
3Base.size — Functionsize(A::AbstractArray, [dim])Return a tuple containing the dimensions of A. Optionally you can specify a dimension to just get the length of that dimension.
Note that size may not be defined for arrays with non-standard indices, in which case axes may be useful. See the manual chapter on arrays with custom indices.
See also: length, ndims, eachindex, sizeof.
Examples
julia> A = fill(1, (2,3,4));
julia> size(A)
(2, 3, 4)
julia> size(A, 2)
3Base.axes — Methodaxes(A)Return the tuple of valid indices for array A.
See also: size, keys, eachindex.
Examples
julia> A = fill(1, (5,6,7));
julia> axes(A)
(Base.OneTo(5), Base.OneTo(6), Base.OneTo(7))Base.axes — Methodaxes(A, d)Return the valid range of indices for array A along dimension d.
See also size, and the manual chapter on arrays with custom indices.
Examples
julia> A = fill(1, (5,6,7));
julia> axes(A, 2)
Base.OneTo(6)
julia> axes(A, 4) == 1:1 # all dimensions d > ndims(A) have size 1
trueUsage note
Each of the indices has to be an AbstractUnitRange{<:Integer}, but at the same time can be a type that uses custom indices. So, for example, if you need a subset, use generalized indexing constructs like begin/end or firstindex/lastindex:
ix = axes(v, 1)
ix[2:end] # will work for eg Vector, but may fail in general
ix[(begin+1):end] # works for generalized indexesBase.length — Methodlength(A::AbstractArray)Return the number of elements in the array, defaults to prod(size(A)).
Examples
julia> length([1, 2, 3, 4])
4
julia> length([1 2; 3 4])
4Base.keys — Methodkeys(a::AbstractArray)Return an efficient array describing all valid indices for a arranged in the shape of a itself.
The keys of 1-dimensional arrays (vectors) are integers, whereas all other N-dimensional arrays use CartesianIndex to describe their locations. Often the special array types LinearIndices and CartesianIndices are used to efficiently represent these arrays of integers and CartesianIndexes, respectively.
Note that the keys of an array might not be the most efficient index type; for maximum performance use eachindex instead.
Examples
julia> keys([4, 5, 6])
3-element LinearIndices{1, Tuple{Base.OneTo{Int64}}}:
1
2
3
julia> keys([4 5; 6 7])
CartesianIndices((2, 2))Base.eachindex — Functioneachindex(A...)
eachindex(::IndexStyle, A::AbstractArray...)Create an iterable object for visiting each index of an AbstractArray A in an efficient manner. For array types that have opted into fast linear indexing (like Array), this is simply the range 1:length(A) if they use 1-based indexing. For array types that have not opted into fast linear indexing, a specialized Cartesian range is typically returned to efficiently index into the array with indices specified for every dimension.
In general eachindex accepts arbitrary iterables, including strings and dictionaries, and returns an iterator object supporting arbitrary index types (e.g. unevenly spaced or non-integer indices).
If A is AbstractArray it is possible to explicitly specify the style of the indices that should be returned by eachindex by passing a value having IndexStyle type as its first argument (typically IndexLinear() if linear indices are required or IndexCartesian() if Cartesian range is wanted).
If you supply more than one AbstractArray argument, eachindex will create an iterable object that is fast for all arguments (typically a UnitRange if all inputs have fast linear indexing, a CartesianIndices otherwise). If the arrays have different sizes and/or dimensionalities, a DimensionMismatch exception will be thrown.
See also pairs(A) to iterate over indices and values together, and axes(A, 2) for valid indices along one dimension.
Examples
julia> A = [10 20; 30 40];
julia> for i in eachindex(A) # linear indexing
println("A[", i, "] == ", A[i])
end
A[1] == 10
A[2] == 30
A[3] == 20
A[4] == 40
julia> for i in eachindex(view(A, 1:2, 1:1)) # Cartesian indexing
println(i)
end
CartesianIndex(1, 1)
CartesianIndex(2, 1)Base.IndexStyle — TypeIndexStyle(A)
IndexStyle(typeof(A))IndexStyle specifies the "native indexing style" for array A. When you define a new AbstractArray type, you can choose to implement either linear indexing (with IndexLinear) or cartesian indexing. If you decide to only implement linear indexing, then you must set this trait for your array type:
Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()The default is IndexCartesian().
Julia's internal indexing machinery will automatically (and invisibly) recompute all indexing operations into the preferred style. This allows users to access elements of your array using any indexing style, even when explicit methods have not been provided.
If you define both styles of indexing for your AbstractArray, this trait can be used to select the most performant indexing style. Some methods check this trait on their inputs, and dispatch to different algorithms depending on the most efficient access pattern. In particular, eachindex creates an iterator whose type depends on the setting of this trait.
Base.IndexLinear — TypeIndexLinear()Subtype of IndexStyle used to describe arrays which are optimally indexed by one linear index.
A linear indexing style uses one integer index to describe the position in the array (even if it's a multidimensional array) and column-major ordering is used to efficiently access the elements. This means that requesting eachindex from an array that is IndexLinear will return a simple one-dimensional range, even if it is multidimensional.
A custom array that reports its IndexStyle as IndexLinear only needs to implement indexing (and indexed assignment) with a single Int index; all other indexing expressions — including multidimensional accesses — will be recomputed to the linear index. For example, if A were a 2×3 custom matrix with linear indexing, and we referenced A[1, 3], this would be recomputed to the equivalent linear index and call A[5] since 1 + 2*(3 - 1) = 5.
See also IndexCartesian.
Base.IndexCartesian — TypeIndexCartesian()Subtype of IndexStyle used to describe arrays which are optimally indexed by a Cartesian index. This is the default for new custom AbstractArray subtypes.
A Cartesian indexing style uses multiple integer indices to describe the position in a multidimensional array, with exactly one index per dimension. This means that requesting eachindex from an array that is IndexCartesian will return a range of CartesianIndices.
A N-dimensional custom array that reports its IndexStyle as IndexCartesian needs to implement indexing (and indexed assignment) with exactly N Int indices; all other indexing expressions — including linear indexing — will be recomputed to the equivalent Cartesian location. For example, if A were a 2×3 custom matrix with cartesian indexing, and we referenced A[5], this would be recomputed to the equivalent Cartesian index and call A[1, 3] since 5 = 1 + 2*(3 - 1).
It is significantly more expensive to compute Cartesian indices from a linear index than it is to go the other way. The former operation requires division — a very costly operation — whereas the latter only uses multiplication and addition and is essentially free. This asymmetry means it is far more costly to use linear indexing with an IndexCartesian array than it is to use Cartesian indexing with an IndexLinear array.
See also IndexLinear.
Base.conj! — Functionconj!(A)Transform an array to its complex conjugate in-place.
See also conj.
Examples
julia> A = [1+im 2-im; 2+2im 3+im]
2×2 Matrix{Complex{Int64}}:
1+1im 2-1im
2+2im 3+1im
julia> conj!(A);
julia> A
2×2 Matrix{Complex{Int64}}:
1-1im 2+1im
2-2im 3-1imBase.stride — Functionstride(A, k::Integer)Return the distance in memory (in number of elements) between adjacent elements in dimension k.
See also: strides.
Examples
julia> A = fill(1, (3,4,5));
julia> stride(A,2)
3
julia> stride(A,3)
12Base.strides — Functionstrides(A)Return a tuple of the memory strides in each dimension.
See also: stride.
Examples
julia> A = fill(1, (3,4,5));
julia> strides(A)
(1, 3, 12)广播与矢量化
也可参照 dot syntax for vectorizing functions; 例如,f.(args...) 隐式调用 broadcast(f, args...)。 与其依赖如 sin 函数的“已矢量化”方法,你应该使用 sin.(a) 来使用broadcast来矢量化。
Base.Broadcast.broadcast — Functionbroadcast(f, As...)Broadcast the function f over the arrays, tuples, collections, Refs and/or scalars As.
Broadcasting applies the function f over the elements of the container arguments and the scalars themselves in As. Singleton and missing dimensions are expanded to match the extents of the other arguments by virtually repeating the value. By default, only a limited number of types are considered scalars, including Numbers, Strings, Symbols, Types, Functions and some common singletons like missing and nothing. All other arguments are iterated over or indexed into elementwise.
The resulting container type is established by the following rules:
- If all the arguments are scalars or zero-dimensional arrays, it returns an unwrapped scalar.
- If at least one argument is a tuple and all others are scalars or zero-dimensional arrays, it returns a tuple.
- All other combinations of arguments default to returning an
Array, but custom container types can define their own implementation and promotion-like rules to customize the result when they appear as arguments.
A special syntax exists for broadcasting: f.(args...) is equivalent to broadcast(f, args...), and nested f.(g.(args...)) calls are fused into a single broadcast loop.
Examples
julia> A = [1, 2, 3, 4, 5]
5-element Vector{Int64}:
1
2
3
4
5
julia> B = [1 2; 3 4; 5 6; 7 8; 9 10]
5×2 Matrix{Int64}:
1 2
3 4
5 6
7 8
9 10
julia> broadcast(+, A, B)
5×2 Matrix{Int64}:
2 3
5 6
8 9
11 12
14 15
julia> parse.(Int, ["1", "2"])
2-element Vector{Int64}:
1
2
julia> abs.((1, -2))
(1, 2)
julia> broadcast(+, 1.0, (0, -2.0))
(1.0, -1.0)
julia> (+).([[0,2], [1,3]], Ref{Vector{Int}}([1,-1]))
2-element Vector{Vector{Int64}}:
[1, 1]
[2, 2]
julia> string.(("one","two","three","four"), ": ", 1:4)
4-element Vector{String}:
"one: 1"
"two: 2"
"three: 3"
"four: 4"
Base.Broadcast.broadcast! — Functionbroadcast!(f, dest, As...)Like broadcast, but store the result of broadcast(f, As...) in the dest array. Note that dest is only used to store the result, and does not supply arguments to f unless it is also listed in the As, as in broadcast!(f, A, A, B) to perform A[:] = broadcast(f, A, B).
Examples
julia> A = [1.0; 0.0]; B = [0.0; 0.0];
julia> broadcast!(+, B, A, (0, -2.0));
julia> B
2-element Vector{Float64}:
1.0
-2.0
julia> A
2-element Vector{Float64}:
1.0
0.0
julia> broadcast!(+, A, A, (0, -2.0));
julia> A
2-element Vector{Float64}:
1.0
-2.0Base.Broadcast.@__dot__ — Macro@. exprConvert every function call or operator in expr into a "dot call" (e.g. convert f(x) to f.(x)), and convert every assignment in expr to a "dot assignment" (e.g. convert += to .+=).
If you want to avoid adding dots for selected function calls in expr, splice those function calls in with $. For example, @. sqrt(abs($sort(x))) is equivalent to sqrt.(abs.(sort(x))) (no dot for sort).
(@. is equivalent to a call to @__dot__.)
Examples
julia> x = 1.0:3.0; y = similar(x);
julia> @. y = x + 3 * sin(x)
3-element Vector{Float64}:
3.5244129544236893
4.727892280477045
3.4233600241796016自定义类型的广播,请参照
Base.Broadcast.BroadcastStyle — TypeBroadcastStyle is an abstract type and trait-function used to determine behavior of objects under broadcasting. BroadcastStyle(typeof(x)) returns the style associated with x. To customize the broadcasting behavior of a type, one can declare a style by defining a type/method pair
struct MyContainerStyle <: BroadcastStyle end
Base.BroadcastStyle(::Type{<:MyContainer}) = MyContainerStyle()One then writes method(s) (at least similar) operating on Broadcasted{MyContainerStyle}. There are also several pre-defined subtypes of BroadcastStyle that you may be able to leverage; see the Interfaces chapter for more information.
Base.Broadcast.AbstractArrayStyle — TypeBroadcast.AbstractArrayStyle{N} <: BroadcastStyle is the abstract supertype for any style associated with an AbstractArray type. The N parameter is the dimensionality, which can be handy for AbstractArray types that only support specific dimensionalities:
struct SparseMatrixStyle <: Broadcast.AbstractArrayStyle{2} end
Base.BroadcastStyle(::Type{<:SparseMatrixCSC}) = SparseMatrixStyle()For AbstractArray types that support arbitrary dimensionality, N can be set to Any:
struct MyArrayStyle <: Broadcast.AbstractArrayStyle{Any} end
Base.BroadcastStyle(::Type{<:MyArray}) = MyArrayStyle()In cases where you want to be able to mix multiple AbstractArrayStyles and keep track of dimensionality, your style needs to support a Val constructor:
struct MyArrayStyleDim{N} <: Broadcast.AbstractArrayStyle{N} end
(::Type{<:MyArrayStyleDim})(::Val{N}) where N = MyArrayStyleDim{N}()Note that if two or more AbstractArrayStyle subtypes conflict, broadcasting machinery will fall back to producing Arrays. If this is undesirable, you may need to define binary BroadcastStyle rules to control the output type.
See also Broadcast.DefaultArrayStyle.
Base.Broadcast.ArrayStyle — TypeBroadcast.ArrayStyle{MyArrayType}() is a BroadcastStyle indicating that an object behaves as an array for broadcasting. It presents a simple way to construct Broadcast.AbstractArrayStyles for specific AbstractArray container types. Broadcast styles created this way lose track of dimensionality; if keeping track is important for your type, you should create your own custom Broadcast.AbstractArrayStyle.
Base.Broadcast.DefaultArrayStyle — TypeBroadcast.DefaultArrayStyle{N}() is a BroadcastStyle indicating that an object behaves as an N-dimensional array for broadcasting. Specifically, DefaultArrayStyle is used for any AbstractArray type that hasn't defined a specialized style, and in the absence of overrides from other broadcast arguments the resulting output type is Array. When there are multiple inputs to broadcast, DefaultArrayStyle "loses" to any other Broadcast.ArrayStyle.
Base.Broadcast.broadcastable — FunctionBroadcast.broadcastable(x)Return either x or an object like x such that it supports axes, indexing, and its type supports ndims.
If x supports iteration, the returned value should have the same axes and indexing behaviors as collect(x).
If x is not an AbstractArray but it supports axes, indexing, and its type supports ndims, then broadcastable(::typeof(x)) may be implemented to just return itself. Further, if x defines its own BroadcastStyle, then it must define its broadcastable method to return itself for the custom style to have any effect.
Examples
julia> Broadcast.broadcastable([1,2,3]) # like `identity` since arrays already support axes and indexing
3-element Vector{Int64}:
1
2
3
julia> Broadcast.broadcastable(Int) # Types don't support axes, indexing, or iteration but are commonly used as scalars
Base.RefValue{Type{Int64}}(Int64)
julia> Broadcast.broadcastable("hello") # Strings break convention of matching iteration and act like a scalar instead
Base.RefValue{String}("hello")Base.Broadcast.combine_axes — Functioncombine_axes(As...) -> TupleDetermine the result axes for broadcasting across all values in As.
julia> Broadcast.combine_axes([1], [1 2; 3 4; 5 6])
(Base.OneTo(3), Base.OneTo(2))
julia> Broadcast.combine_axes(1, 1, 1)
()Base.Broadcast.combine_styles — Functioncombine_styles(cs...) -> BroadcastStyleDecides which BroadcastStyle to use for any number of value arguments. Uses BroadcastStyle to get the style for each argument, and uses result_style to combine styles.
Examples
julia> Broadcast.combine_styles([1], [1 2; 3 4])
Base.Broadcast.DefaultArrayStyle{2}()Base.Broadcast.result_style — Functionresult_style(s1::BroadcastStyle[, s2::BroadcastStyle]) -> BroadcastStyleTakes one or two BroadcastStyles and combines them using BroadcastStyle to determine a common BroadcastStyle.
Examples
julia> Broadcast.result_style(Broadcast.DefaultArrayStyle{0}(), Broadcast.DefaultArrayStyle{3}())
Base.Broadcast.DefaultArrayStyle{3}()
julia> Broadcast.result_style(Broadcast.Unknown(), Broadcast.DefaultArrayStyle{1}())
Base.Broadcast.DefaultArrayStyle{1}()索引与赋值
Base.getindex — Methodgetindex(A, inds...)Return a subset of array A as specified by inds, where each ind may be, for example, an Int, an AbstractRange, or a Vector. See the manual section on array indexing for details.
Examples
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> getindex(A, 1)
1
julia> getindex(A, [2, 1])
2-element Vector{Int64}:
3
1
julia> getindex(A, 2:4)
3-element Vector{Int64}:
3
2
4Base.setindex! — Methodsetindex!(A, X, inds...)
A[inds...] = XStore values from array X within some subset of A as specified by inds. The syntax A[inds...] = X is equivalent to (setindex!(A, X, inds...); X).
Behavior can be unexpected when any mutated argument shares memory with any other argument.
Examples
julia> A = zeros(2,2);
julia> setindex!(A, [10, 20], [1, 2]);
julia> A[[3, 4]] = [30, 40];
julia> A
2×2 Matrix{Float64}:
10.0 30.0
20.0 40.0Base.copyto! — Methodcopyto!(dest, Rdest::CartesianIndices, src, Rsrc::CartesianIndices) -> destCopy the block of src in the range of Rsrc to the block of dest in the range of Rdest. The sizes of the two regions must match.
Examples
julia> A = zeros(5, 5);
julia> B = [1 2; 3 4];
julia> Ainds = CartesianIndices((2:3, 2:3));
julia> Binds = CartesianIndices(B);
julia> copyto!(A, Ainds, B, Binds)
5×5 Matrix{Float64}:
0.0 0.0 0.0 0.0 0.0
0.0 1.0 2.0 0.0 0.0
0.0 3.0 4.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0Base.copy! — Functioncopy!(dst, src) -> dstIn-place copy of src into dst, discarding any pre-existing elements in dst. If dst and src are of the same type, dst == src should hold after the call. If dst and src are multidimensional arrays, they must have equal axes.
Behavior can be unexpected when any mutated argument shares memory with any other argument.
See also copyto!.
This method requires at least Julia 1.1. In Julia 1.0 this method is available from the Future standard library as Future.copy!.
Base.isassigned — Functionisassigned(array, i) -> BoolTest whether the given array has a value associated with index i. Return false if the index is out of bounds, or has an undefined reference.
Examples
julia> isassigned(rand(3, 3), 5)
true
julia> isassigned(rand(3, 3), 3 * 3 + 1)
false
julia> mutable struct Foo end
julia> v = similar(rand(3), Foo)
3-element Vector{Foo}:
#undef
#undef
#undef
julia> isassigned(v, 1)
falseBase.Colon — TypeColon()Colons (:) are used to signify indexing entire objects or dimensions at once.
Very few operations are defined on Colons directly; instead they are converted by to_indices to an internal vector type (Base.Slice) to represent the collection of indices they span before being used.
The singleton instance of Colon is also a function used to construct ranges; see :.
Base.IteratorsMD.CartesianIndex — TypeCartesianIndex(i, j, k...) -> I
CartesianIndex((i, j, k...)) -> ICreate a multidimensional index I, which can be used for indexing a multidimensional array A. In particular, A[I] is equivalent to A[i,j,k...]. One can freely mix integer and CartesianIndex indices; for example, A[Ipre, i, Ipost] (where Ipre and Ipost are CartesianIndex indices and i is an Int) can be a useful expression when writing algorithms that work along a single dimension of an array of arbitrary dimensionality.
A CartesianIndex is sometimes produced by eachindex, and always when iterating with an explicit CartesianIndices.
An I::CartesianIndex is treated as a "scalar" (not a container) for broadcast. In order to iterate over the components of a CartesianIndex, convert it to a tuple with Tuple(I).
Examples
julia> A = reshape(Vector(1:16), (2, 2, 2, 2))
2×2×2×2 Array{Int64, 4}:
[:, :, 1, 1] =
1 3
2 4
[:, :, 2, 1] =
5 7
6 8
[:, :, 1, 2] =
9 11
10 12
[:, :, 2, 2] =
13 15
14 16
julia> A[CartesianIndex((1, 1, 1, 1))]
1
julia> A[CartesianIndex((1, 1, 1, 2))]
9
julia> A[CartesianIndex((1, 1, 2, 1))]
5Using a CartesianIndex as a "scalar" for broadcast requires Julia 1.10; in previous releases, use Ref(I).
Base.IteratorsMD.CartesianIndices — TypeCartesianIndices(sz::Dims) -> R
CartesianIndices((istart:[istep:]istop, jstart:[jstep:]jstop, ...)) -> RDefine a region R spanning a multidimensional rectangular range of integer indices. These are most commonly encountered in the context of iteration, where for I in R ... end will return CartesianIndex indices I equivalent to the nested loops
for j = jstart:jstep:jstop
for i = istart:istep:istop
...
end
endConsequently these can be useful for writing algorithms that work in arbitrary dimensions.
CartesianIndices(A::AbstractArray) -> RAs a convenience, constructing a CartesianIndices from an array makes a range of its indices.
The step range method CartesianIndices((istart:istep:istop, jstart:[jstep:]jstop, ...)) requires at least Julia 1.6.
Examples
julia> foreach(println, CartesianIndices((2, 2, 2)))
CartesianIndex(1, 1, 1)
CartesianIndex(2, 1, 1)
CartesianIndex(1, 2, 1)
CartesianIndex(2, 2, 1)
CartesianIndex(1, 1, 2)
CartesianIndex(2, 1, 2)
CartesianIndex(1, 2, 2)
CartesianIndex(2, 2, 2)
julia> CartesianIndices(fill(1, (2,3)))
CartesianIndices((2, 3))Conversion between linear and cartesian indices
Linear index to cartesian index conversion exploits the fact that a CartesianIndices is an AbstractArray and can be indexed linearly:
julia> cartesian = CartesianIndices((1:3, 1:2))
CartesianIndices((1:3, 1:2))
julia> cartesian[4]
CartesianIndex(1, 2)
julia> cartesian = CartesianIndices((1:2:5, 1:2))
CartesianIndices((1:2:5, 1:2))
julia> cartesian[2, 2]
CartesianIndex(3, 2)Broadcasting
CartesianIndices support broadcasting arithmetic (+ and -) with a CartesianIndex.
Broadcasting of CartesianIndices requires at least Julia 1.1.
julia> CIs = CartesianIndices((2:3, 5:6))
CartesianIndices((2:3, 5:6))
julia> CI = CartesianIndex(3, 4)
CartesianIndex(3, 4)
julia> CIs .+ CI
CartesianIndices((5:6, 9:10))For cartesian to linear index conversion, see LinearIndices.
Base.Dims — TypeDims{N}An NTuple of N Ints used to represent the dimensions of an AbstractArray.
Base.LinearIndices — TypeLinearIndices(A::AbstractArray)Return a LinearIndices array with the same shape and axes as A, holding the linear index of each entry in A. Indexing this array with cartesian indices allows mapping them to linear indices.
For arrays with conventional indexing (indices start at 1), or any multidimensional array, linear indices range from 1 to length(A). However, for AbstractVectors linear indices are axes(A, 1), and therefore do not start at 1 for vectors with unconventional indexing.
Calling this function is the "safe" way to write algorithms that exploit linear indexing.
Examples
julia> A = fill(1, (5,6,7));
julia> b = LinearIndices(A);
julia> extrema(b)
(1, 210)LinearIndices(inds::CartesianIndices) -> R
LinearIndices(sz::Dims) -> R
LinearIndices((istart:istop, jstart:jstop, ...)) -> RReturn a LinearIndices array with the specified shape or axes.
Example
The main purpose of this constructor is intuitive conversion from cartesian to linear indexing:
julia> linear = LinearIndices((1:3, 1:2))
3×2 LinearIndices{2, Tuple{UnitRange{Int64}, UnitRange{Int64}}}:
1 4
2 5
3 6
julia> linear[1,2]
4Base.to_indices — Functionto_indices(A, I::Tuple)Convert the tuple I to a tuple of indices for use in indexing into array A.
The returned tuple must only contain either Ints or AbstractArrays of scalar indices that are supported by array A. It will error upon encountering a novel index type that it does not know how to process.
For simple index types, it defers to the unexported Base.to_index(A, i) to process each index i. While this internal function is not intended to be called directly, Base.to_index may be extended by custom array or index types to provide custom indexing behaviors.
More complicated index types may require more context about the dimension into which they index. To support those cases, to_indices(A, I) calls to_indices(A, axes(A), I), which then recursively walks through both the given tuple of indices and the dimensional indices of A in tandem. As such, not all index types are guaranteed to propagate to Base.to_index.
Examples
julia> A = zeros(1,2,3,4);
julia> to_indices(A, (1,1,2,2))
(1, 1, 2, 2)
julia> to_indices(A, (1,1,2,20)) # no bounds checking
(1, 1, 2, 20)
julia> to_indices(A, (CartesianIndex((1,)), 2, CartesianIndex((3,4)))) # exotic index
(1, 2, 3, 4)
julia> to_indices(A, ([1,1], 1:2, 3, 4))
([1, 1], 1:2, 3, 4)
julia> to_indices(A, (1,2)) # no shape checking
(1, 2)Base.checkbounds — Functioncheckbounds(Bool, A, I...)Return true if the specified indices I are in bounds for the given array A. Subtypes of AbstractArray should specialize this method if they need to provide custom bounds checking behaviors; however, in many cases one can rely on A's indices and checkindex.
See also checkindex.
Examples
julia> A = rand(3, 3);
julia> checkbounds(Bool, A, 2)
true
julia> checkbounds(Bool, A, 3, 4)
false
julia> checkbounds(Bool, A, 1:3)
true
julia> checkbounds(Bool, A, 1:3, 2:4)
falsecheckbounds(A, I...)Throw an error if the specified indices I are not in bounds for the given array A.
Base.checkindex — Functioncheckindex(Bool, inds::AbstractUnitRange, index)Return true if the given index is within the bounds of inds. Custom types that would like to behave as indices for all arrays can extend this method in order to provide a specialized bounds checking implementation.
See also checkbounds.
Examples
julia> checkindex(Bool, 1:20, 8)
true
julia> checkindex(Bool, 1:20, 21)
falseBase.elsize — Functionelsize(type)Compute the memory stride in bytes between consecutive elements of eltype stored inside the given type, if the array elements are stored densely with a uniform linear stride.
Examples
julia> Base.elsize(rand(Float32, 10))
4Views (SubArrays 以及其它 view 类型)
“视图”是一种表现和数组相似的数据结构(它是 AbstractArray 的子类型),但是它的底层数据实际上是另一个数组的一部分。
例如,x 是一个数组,v = @view x[1:10],则 v 表现得就像一个含有 10 个元素的数组,但是它的数据实际上是访问 x 的前 10 个元素。对视图的写入,如 v[3] = 2,直接写入了底层的数组 x (这里是修改 x[3])。
在 Julia 中,像 x[1:10] 这样的切片操作会创建一个副本。@view x[1:10] 将它变成创建一个视图。 @views 宏可以用于整个代码块(如 @views function foo() .... end 或 @views begin ... end)来将整个代码块中的切片操作变为使用视图。 如性能建议所描述的,有时候使用数据的副本更快,而有时候使用视图会更快。
Base.view — Functionview(A, inds...)Like getindex, but returns a lightweight array that lazily references (or is effectively a view into) the parent array A at the given index or indices inds instead of eagerly extracting elements or constructing a copied subset. Calling getindex or setindex! on the returned value (often a SubArray) computes the indices to access or modify the parent array on the fly. The behavior is undefined if the shape of the parent array is changed after view is called because there is no bound check for the parent array; e.g., it may cause a segmentation fault.
Some immutable parent arrays (like ranges) may choose to simply recompute a new array in some circumstances instead of returning a SubArray if doing so is efficient and provides compatible semantics.
In Julia 1.6 or later, view can be called on an AbstractString, returning a SubString.
Examples
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> b = view(A, :, 1)
2-element view(::Matrix{Int64}, :, 1) with eltype Int64:
1
3
julia> fill!(b, 0)
2-element view(::Matrix{Int64}, :, 1) with eltype Int64:
0
0
julia> A # Note A has changed even though we modified b
2×2 Matrix{Int64}:
0 2
0 4
julia> view(2:5, 2:3) # returns a range as type is immutable
3:4Base.@view — Macro@view A[inds...]Transform the indexing expression A[inds...] into the equivalent view call.
This can only be applied directly to a single indexing expression and is particularly helpful for expressions that include the special begin or end indexing syntaxes like A[begin, 2:end-1] (as those are not supported by the normal view function).
Note that @view cannot be used as the target of a regular assignment (e.g., @view(A[1, 2:end]) = ...), nor would the un-decorated indexed assignment (A[1, 2:end] = ...) or broadcasted indexed assignment (A[1, 2:end] .= ...) make a copy. It can be useful, however, for updating broadcasted assignments like @view(A[1, 2:end]) .+= 1 because this is a simple syntax for @view(A[1, 2:end]) .= @view(A[1, 2:end]) + 1, and the indexing expression on the right-hand side would otherwise make a copy without the @view.
See also @views to switch an entire block of code to use views for non-scalar indexing.
Using begin in an indexing expression to refer to the first index requires at least Julia 1.5.
Examples
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> b = @view A[:, 1]
2-element view(::Matrix{Int64}, :, 1) with eltype Int64:
1
3
julia> fill!(b, 0)
2-element view(::Matrix{Int64}, :, 1) with eltype Int64:
0
0
julia> A
2×2 Matrix{Int64}:
0 2
0 4Base.@views — Macro@views expressionConvert every array-slicing operation in the given expression (which may be a begin/end block, loop, function, etc.) to return a view. Scalar indices, non-array types, and explicit getindex calls (as opposed to array[...]) are unaffected.
Similarly, @views converts string slices into SubString views.
The @views macro only affects array[...] expressions that appear explicitly in the given expression, not array slicing that occurs in functions called by that code.
Using begin in an indexing expression to refer to the first index requires at least Julia 1.5.
Examples
julia> A = zeros(3, 3);
julia> @views for row in 1:3
b = A[row, :]
b[:] .= row
end
julia> A
3×3 Matrix{Float64}:
1.0 1.0 1.0
2.0 2.0 2.0
3.0 3.0 3.0Base.parent — Functionparent(A)Return the underlying parent object of the view. This parent of objects of types SubArray, SubString, ReshapedArray or LinearAlgebra.Transpose is what was passed as an argument to view, reshape, transpose, etc. during object creation. If the input is not a wrapped object, return the input itself. If the input is wrapped multiple times, only the outermost wrapper will be removed.
Examples
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> V = view(A, 1:2, :)
2×2 view(::Matrix{Int64}, 1:2, :) with eltype Int64:
1 2
3 4
julia> parent(V)
2×2 Matrix{Int64}:
1 2
3 4Base.parentindices — Functionparentindices(A)Return the indices in the parent which correspond to the view A.
Examples
julia> A = [1 2; 3 4];
julia> V = view(A, 1, :)
2-element view(::Matrix{Int64}, 1, :) with eltype Int64:
1
2
julia> parentindices(V)
(1, Base.Slice(Base.OneTo(2)))Base.selectdim — Functionselectdim(A, d::Integer, i)Return a view of all the data of A where the index for dimension d equals i.
Equivalent to view(A,:,:,...,i,:,:,...) where i is in position d.
See also: eachslice.
Examples
julia> A = [1 2 3 4; 5 6 7 8]
2×4 Matrix{Int64}:
1 2 3 4
5 6 7 8
julia> selectdim(A, 2, 3)
2-element view(::Matrix{Int64}, :, 3) with eltype Int64:
3
7
julia> selectdim(A, 2, 3:4)
2×2 view(::Matrix{Int64}, :, 3:4) with eltype Int64:
3 4
7 8Base.reinterpret — Functionreinterpret(::Type{Out}, x::In)Change the type-interpretation of the binary data in the isbits value x to that of the isbits type Out. The size (ignoring padding) of Out has to be the same as that of the type of x. For example, reinterpret(Float32, UInt32(7)) interprets the 4 bytes corresponding to UInt32(7) as a Float32.
julia> reinterpret(Float32, UInt32(7))
1.0f-44
julia> reinterpret(NTuple{2, UInt8}, 0x1234)
(0x34, 0x12)
julia> reinterpret(UInt16, (0x34, 0x12))
0x1234
julia> reinterpret(Tuple{UInt16, UInt8}, (0x01, 0x0203))
(0x0301, 0x02)Use caution if some combinations of bits in Out are not considered valid and would otherwise be prevented by the type's constructors and methods. Unexpected behavior may result without additional validation.
reinterpret(T::DataType, A::AbstractArray)Construct a view of the array with the same binary data as the given array, but with T as element type.
This function also works on "lazy" array whose elements are not computed until they are explicitly retrieved. For instance, reinterpret on the range 1:6 works similarly as on the dense vector collect(1:6):
julia> reinterpret(Float32, UInt32[1 2 3 4 5])
1×5 reinterpret(Float32, ::Matrix{UInt32}):
1.0f-45 3.0f-45 4.0f-45 6.0f-45 7.0f-45
julia> reinterpret(Complex{Int}, 1:6)
3-element reinterpret(Complex{Int64}, ::UnitRange{Int64}):
1 + 2im
3 + 4im
5 + 6imreinterpret(reshape, T, A::AbstractArray{S}) -> BChange the type-interpretation of A while consuming or adding a "channel dimension."
If sizeof(T) = n*sizeof(S) for n>1, A's first dimension must be of size n and B lacks A's first dimension. Conversely, if sizeof(S) = n*sizeof(T) for n>1, B gets a new first dimension of size n. The dimensionality is unchanged if sizeof(T) == sizeof(S).
This method requires at least Julia 1.6.
Examples
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> reinterpret(reshape, Complex{Int}, A) # the result is a vector
2-element reinterpret(reshape, Complex{Int64}, ::Matrix{Int64}) with eltype Complex{Int64}:
1 + 3im
2 + 4im
julia> a = [(1,2,3), (4,5,6)]
2-element Vector{Tuple{Int64, Int64, Int64}}:
(1, 2, 3)
(4, 5, 6)
julia> reinterpret(reshape, Int, a) # the result is a matrix
3×2 reinterpret(reshape, Int64, ::Vector{Tuple{Int64, Int64, Int64}}) with eltype Int64:
1 4
2 5
3 6Base.reshape — Functionreshape(A, dims...) -> AbstractArray
reshape(A, dims) -> AbstractArrayReturn an array with the same data as A, but with different dimension sizes or number of dimensions. The two arrays share the same underlying data, so that the result is mutable if and only if A is mutable, and setting elements of one alters the values of the other.
The new dimensions may be specified either as a list of arguments or as a shape tuple. At most one dimension may be specified with a :, in which case its length is computed such that its product with all the specified dimensions is equal to the length of the original array A. The total number of elements must not change.
Examples
julia> A = Vector(1:16)
16-element Vector{Int64}:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
julia> reshape(A, (4, 4))
4×4 Matrix{Int64}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> reshape(A, 2, :)
2×8 Matrix{Int64}:
1 3 5 7 9 11 13 15
2 4 6 8 10 12 14 16
julia> reshape(1:6, 2, 3)
2×3 reshape(::UnitRange{Int64}, 2, 3) with eltype Int64:
1 3 5
2 4 6Base.dropdims — Functiondropdims(A; dims)Return an array with the same data as A, but with the dimensions specified by dims removed. size(A,d) must equal 1 for every d in dims, and repeated dimensions or numbers outside 1:ndims(A) are forbidden.
The result shares the same underlying data as A, such that the result is mutable if and only if A is mutable, and setting elements of one alters the values of the other.
Examples
julia> a = reshape(Vector(1:4),(2,2,1,1))
2×2×1×1 Array{Int64, 4}:
[:, :, 1, 1] =
1 3
2 4
julia> b = dropdims(a; dims=3)
2×2×1 Array{Int64, 3}:
[:, :, 1] =
1 3
2 4
julia> b[1,1,1] = 5; a
2×2×1×1 Array{Int64, 4}:
[:, :, 1, 1] =
5 3
2 4Base.vec — Functionvec(a::AbstractArray) -> AbstractVectorReshape the array a as a one-dimensional column vector. Return a if it is already an AbstractVector. The resulting array shares the same underlying data as a, so it will only be mutable if a is mutable, in which case modifying one will also modify the other.
Examples
julia> a = [1 2 3; 4 5 6]
2×3 Matrix{Int64}:
1 2 3
4 5 6
julia> vec(a)
6-element Vector{Int64}:
1
4
2
5
3
6
julia> vec(1:3)
1:3Base.SubArray — TypeSubArray{T,N,P,I,L} <: AbstractArray{T,N}N-dimensional view into a parent array (of type P) with an element type T, restricted by a tuple of indices (of type I). L is true for types that support fast linear indexing, and false otherwise.
Construct SubArrays using the view function.
拼接与排列
Base.cat — Functioncat(A...; dims)Concatenate the input arrays along the dimensions specified in dims.
Along a dimension d in dims, the size of the output array is sum(size(a,d) for a in A). Along other dimensions, all input arrays should have the same size, which will also be the size of the output array along those dimensions.
If dims is a single number, the different arrays are tightly packed along that dimension. If dims is an iterable containing several dimensions, the positions along these dimensions are increased simultaneously for each input array, filling with zero elsewhere. This allows one to construct block-diagonal matrices as cat(matrices...; dims=(1,2)), and their higher-dimensional analogues.
The special case dims=1 is vcat, and dims=2 is hcat. See also hvcat, hvncat, stack, repeat.
The keyword also accepts Val(dims).
For multiple dimensions dims = Val(::Tuple) was added in Julia 1.8.
Examples
julia> cat([1 2; 3 4], [pi, pi], fill(10, 2,3,1); dims=2) # same as hcat
2×6×1 Array{Float64, 3}:
[:, :, 1] =
1.0 2.0 3.14159 10.0 10.0 10.0
3.0 4.0 3.14159 10.0 10.0 10.0
julia> cat(true, trues(2,2), trues(4)', dims=(1,2)) # block-diagonal
4×7 Matrix{Bool}:
1 0 0 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 1 1 1
julia> cat(1, [2], [3;;]; dims=Val(2))
1×3 Matrix{Int64}:
1 2 3Base.vcat — Functionvcat(A...)Concatenate arrays or numbers vertically. Equivalent to cat(A...; dims=1), and to the syntax [a; b; c].
To concatenate a large vector of arrays, reduce(vcat, A) calls an efficient method when A isa AbstractVector{<:AbstractVecOrMat}, rather than working pairwise.
See also hcat, Iterators.flatten, stack.
Examples
julia> v = vcat([1,2], [3,4])
4-element Vector{Int64}:
1
2
3
4
julia> v == vcat(1, 2, [3,4]) # accepts numbers
true
julia> v == [1; 2; [3,4]] # syntax for the same operation
true
julia> summary(ComplexF64[1; 2; [3,4]]) # syntax for supplying the element type
"4-element Vector{ComplexF64}"
julia> vcat(range(1, 2, length=3)) # collects lazy ranges
3-element Vector{Float64}:
1.0
1.5
2.0
julia> two = ([10, 20, 30]', Float64[4 5 6; 7 8 9]) # row vector and a matrix
([10 20 30], [4.0 5.0 6.0; 7.0 8.0 9.0])
julia> vcat(two...)
3×3 Matrix{Float64}:
10.0 20.0 30.0
4.0 5.0 6.0
7.0 8.0 9.0
julia> vs = [[1, 2], [3, 4], [5, 6]];
julia> reduce(vcat, vs) # more efficient than vcat(vs...)
6-element Vector{Int64}:
1
2
3
4
5
6
julia> ans == collect(Iterators.flatten(vs))
trueBase.hcat — Functionhcat(A...)Concatenate arrays or numbers horizontally. Equivalent to cat(A...; dims=2), and to the syntax [a b c] or [a;; b;; c].
For a large vector of arrays, reduce(hcat, A) calls an efficient method when A isa AbstractVector{<:AbstractVecOrMat}. For a vector of vectors, this can also be written stack(A).
Examples
julia> hcat([1,2], [3,4], [5,6])
2×3 Matrix{Int64}:
1 3 5
2 4 6
julia> hcat(1, 2, [30 40], [5, 6, 7]') # accepts numbers
1×7 Matrix{Int64}:
1 2 30 40 5 6 7
julia> ans == [1 2 [30 40] [5, 6, 7]'] # syntax for the same operation
true
julia> Float32[1 2 [30 40] [5, 6, 7]'] # syntax for supplying the eltype
1×7 Matrix{Float32}:
1.0 2.0 30.0 40.0 5.0 6.0 7.0
julia> ms = [zeros(2,2), [1 2; 3 4], [50 60; 70 80]];
julia> reduce(hcat, ms) # more efficient than hcat(ms...)
2×6 Matrix{Float64}:
0.0 0.0 1.0 2.0 50.0 60.0
0.0 0.0 3.0 4.0 70.0 80.0
julia> stack(ms) |> summary # disagrees on a vector of matrices
"2×2×3 Array{Float64, 3}"
julia> hcat(Int[], Int[], Int[]) # empty vectors, each of size (0,)
0×3 Matrix{Int64}
julia> hcat([1.1, 9.9], Matrix(undef, 2, 0)) # hcat with empty 2×0 Matrix
2×1 Matrix{Any}:
1.1
9.9Base.hvcat — Functionhvcat(blocks_per_row::Union{Tuple{Vararg{Int}}, Int}, values...)Horizontal and vertical concatenation in one call. This function is called for block matrix syntax. The first argument specifies the number of arguments to concatenate in each block row. If the first argument is a single integer n, then all block rows are assumed to have n block columns.
Examples
julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6
(1, 2, 3, 4, 5, 6)
julia> [a b c; d e f]
2×3 Matrix{Int64}:
1 2 3
4 5 6
julia> hvcat((3,3), a,b,c,d,e,f)
2×3 Matrix{Int64}:
1 2 3
4 5 6
julia> [a b; c d; e f]
3×2 Matrix{Int64}:
1 2
3 4
5 6
julia> hvcat((2,2,2), a,b,c,d,e,f)
3×2 Matrix{Int64}:
1 2
3 4
5 6
julia> hvcat((2,2,2), a,b,c,d,e,f) == hvcat(2, a,b,c,d,e,f)
trueBase.hvncat — Functionhvncat(dim::Int, row_first, values...)
hvncat(dims::Tuple{Vararg{Int}}, row_first, values...)
hvncat(shape::Tuple{Vararg{Tuple}}, row_first, values...)Horizontal, vertical, and n-dimensional concatenation of many values in one call.
This function is called for block matrix syntax. The first argument either specifies the shape of the concatenation, similar to hvcat, as a tuple of tuples, or the dimensions that specify the key number of elements along each axis, and is used to determine the output dimensions. The dims form is more performant, and is used by default when the concatenation operation has the same number of elements along each axis (e.g., [a b; c d;;; e f ; g h]). The shape form is used when the number of elements along each axis is unbalanced (e.g., [a b ; c]). Unbalanced syntax needs additional validation overhead. The dim form is an optimization for concatenation along just one dimension. row_first indicates how values are ordered. The meaning of the first and second elements of shape are also swapped based on row_first.
Examples
julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6
(1, 2, 3, 4, 5, 6)
julia> [a b c;;; d e f]
1×3×2 Array{Int64, 3}:
[:, :, 1] =
1 2 3
[:, :, 2] =
4 5 6
julia> hvncat((2,1,3), false, a,b,c,d,e,f)
2×1×3 Array{Int64, 3}:
[:, :, 1] =
1
2
[:, :, 2] =
3
4
[:, :, 3] =
5
6
julia> [a b;;; c d;;; e f]
1×2×3 Array{Int64, 3}:
[:, :, 1] =
1 2
[:, :, 2] =
3 4
[:, :, 3] =
5 6
julia> hvncat(((3, 3), (3, 3), (6,)), true, a, b, c, d, e, f)
1×3×2 Array{Int64, 3}:
[:, :, 1] =
1 2 3
[:, :, 2] =
4 5 6Examples for construction of the arguments
[a b c ; d e f ;;;
g h i ; j k l ;;;
m n o ; p q r ;;;
s t u ; v w x]
⇒ dims = (2, 3, 4)
[a b ; c ;;; d ;;;;]
___ _ _
2 1 1 = elements in each row (2, 1, 1)
_______ _
3 1 = elements in each column (3, 1)
_____________
4 = elements in each 3d slice (4,)
_____________
4 = elements in each 4d slice (4,)
⇒ shape = ((2, 1, 1), (3, 1), (4,), (4,)) with `row_first` = trueBase.stack — Functionstack(iter; [dims])Combine a collection of arrays (or other iterable objects) of equal size into one larger array, by arranging them along one or more new dimensions.
By default the axes of the elements are placed first, giving size(result) = (size(first(iter))..., size(iter)...). This has the same order of elements as Iterators.flatten(iter).
With keyword dims::Integer, instead the ith element of iter becomes the slice selectdim(result, dims, i), so that size(result, dims) == length(iter). In this case stack reverses the action of eachslice with the same dims.
The various cat functions also combine arrays. However, these all extend the arrays' existing (possibly trivial) dimensions, rather than placing the arrays along new dimensions. They also accept arrays as separate arguments, rather than a single collection.
This function requires at least Julia 1.9.
Examples
julia> vecs = (1:2, [30, 40], Float32[500, 600]);
julia> mat = stack(vecs)
2×3 Matrix{Float32}:
1.0 30.0 500.0
2.0 40.0 600.0
julia> mat == hcat(vecs...) == reduce(hcat, collect(vecs))
true
julia> vec(mat) == vcat(vecs...) == reduce(vcat, collect(vecs))
true
julia> stack(zip(1:4, 10:99)) # accepts any iterators of iterators
2×4 Matrix{Int64}:
1 2 3 4
10 11 12 13
julia> vec(ans) == collect(Iterators.flatten(zip(1:4, 10:99)))
true
julia> stack(vecs; dims=1) # unlike any cat function, 1st axis of vecs[1] is 2nd axis of result
3×2 Matrix{Float32}:
1.0 2.0
30.0 40.0
500.0 600.0
julia> x = rand(3,4);
julia> x == stack(eachcol(x)) == stack(eachrow(x), dims=1) # inverse of eachslice
trueHigher-dimensional examples:
julia> A = rand(5, 7, 11);
julia> E = eachslice(A, dims=2); # a vector of matrices
julia> (element = size(first(E)), container = size(E))
(element = (5, 11), container = (7,))
julia> stack(E) |> size
(5, 11, 7)
julia> stack(E) == stack(E; dims=3) == cat(E...; dims=3)
true
julia> A == stack(E; dims=2)
true
julia> M = (fill(10i+j, 2, 3) for i in 1:5, j in 1:7);
julia> (element = size(first(M)), container = size(M))
(element = (2, 3), container = (5, 7))
julia> stack(M) |> size # keeps all dimensions
(2, 3, 5, 7)
julia> stack(M; dims=1) |> size # vec(container) along dims=1
(35, 2, 3)
julia> hvcat(5, M...) |> size # hvcat puts matrices next to each other
(14, 15)stack(f, args...; [dims])Apply a function to each element of a collection, and stack the result. Or to several collections, zipped together.
The function should return arrays (or tuples, or other iterators) all of the same size. These become slices of the result, each separated along dims (if given) or by default along the last dimensions.
Examples
julia> stack(c -> (c, c-32), "julia")
2×5 Matrix{Char}:
'j' 'u' 'l' 'i' 'a'
'J' 'U' 'L' 'I' 'A'
julia> stack(eachrow([1 2 3; 4 5 6]), (10, 100); dims=1) do row, n
vcat(row, row .* n, row ./ n)
end
2×9 Matrix{Float64}:
1.0 2.0 3.0 10.0 20.0 30.0 0.1 0.2 0.3
4.0 5.0 6.0 400.0 500.0 600.0 0.04 0.05 0.06Base.vect — Functionvect(X...)Create a Vector with element type computed from the promote_typeof of the argument, containing the argument list.
Examples
julia> a = Base.vect(UInt8(1), 2.5, 1//2)
3-element Vector{Float64}:
1.0
2.5
0.5Base.circshift — Functioncircshift(A, shifts)Circularly shift, i.e. rotate, the data in an array. The second argument is a tuple or vector giving the amount to shift in each dimension, or an integer to shift only in the first dimension.
See also: circshift!, circcopy!, bitrotate, <<.
Examples
julia> b = reshape(Vector(1:16), (4,4))
4×4 Matrix{Int64}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> circshift(b, (0,2))
4×4 Matrix{Int64}:
9 13 1 5
10 14 2 6
11 15 3 7
12 16 4 8
julia> circshift(b, (-1,0))
4×4 Matrix{Int64}:
2 6 10 14
3 7 11 15
4 8 12 16
1 5 9 13
julia> a = BitArray([true, true, false, false, true])
5-element BitVector:
1
1
0
0
1
julia> circshift(a, 1)
5-element BitVector:
1
1
1
0
0
julia> circshift(a, -1)
5-element BitVector:
1
0
0
1
1Base.circshift! — Functioncircshift!(dest, src, shifts)Circularly shift, i.e. rotate, the data in src, storing the result in dest. shifts specifies the amount to shift in each dimension.
Behavior can be unexpected when any mutated argument shares memory with any other argument.
See also circshift.
Base.circcopy! — Functioncirccopy!(dest, src)Copy src to dest, indexing each dimension modulo its length. src and dest must have the same size, but can be offset in their indices; any offset results in a (circular) wraparound. If the arrays have overlapping indices, then on the domain of the overlap dest agrees with src.
Behavior can be unexpected when any mutated argument shares memory with any other argument.
See also: circshift.
Examples
julia> src = reshape(Vector(1:16), (4,4))
4×4 Array{Int64,2}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> dest = OffsetArray{Int}(undef, (0:3,2:5))
julia> circcopy!(dest, src)
OffsetArrays.OffsetArray{Int64,2,Array{Int64,2}} with indices 0:3×2:5:
8 12 16 4
5 9 13 1
6 10 14 2
7 11 15 3
julia> dest[1:3,2:4] == src[1:3,2:4]
trueBase.findall — Methodfindall(A)Return a vector I of the true indices or keys of A. If there are no such elements of A, return an empty array. To search for other kinds of values, pass a predicate as the first argument.
Indices or keys are of the same type as those returned by keys(A) and pairs(A).
See also: findfirst, searchsorted.
Examples
julia> A = [true, false, false, true]
4-element Vector{Bool}:
1
0
0
1
julia> findall(A)
2-element Vector{Int64}:
1
4
julia> A = [true false; false true]
2×2 Matrix{Bool}:
1 0
0 1
julia> findall(A)
2-element Vector{CartesianIndex{2}}:
CartesianIndex(1, 1)
CartesianIndex(2, 2)
julia> findall(falses(3))
Int64[]Base.findall — Methodfindall(f::Function, A)Return a vector I of the indices or keys of A where f(A[I]) returns true. If there are no such elements of A, return an empty array.
Indices or keys are of the same type as those returned by keys(A) and pairs(A).
Examples
julia> x = [1, 3, 4]
3-element Vector{Int64}:
1
3
4
julia> findall(isodd, x)
2-element Vector{Int64}:
1
2
julia> A = [1 2 0; 3 4 0]
2×3 Matrix{Int64}:
1 2 0
3 4 0
julia> findall(isodd, A)
2-element Vector{CartesianIndex{2}}:
CartesianIndex(1, 1)
CartesianIndex(2, 1)
julia> findall(!iszero, A)
4-element Vector{CartesianIndex{2}}:
CartesianIndex(1, 1)
CartesianIndex(2, 1)
CartesianIndex(1, 2)
CartesianIndex(2, 2)
julia> d = Dict(:A => 10, :B => -1, :C => 0)
Dict{Symbol, Int64} with 3 entries:
:A => 10
:B => -1
:C => 0
julia> findall(x -> x >= 0, d)
2-element Vector{Symbol}:
:A
:C
Base.findfirst — Methodfindfirst(A)Return the index or key of the first true value in A. Return nothing if no such value is found. To search for other kinds of values, pass a predicate as the first argument.
Indices or keys are of the same type as those returned by keys(A) and pairs(A).
See also: findall, findnext, findlast, searchsortedfirst.
Examples
julia> A = [false, false, true, false]
4-element Vector{Bool}:
0
0
1
0
julia> findfirst(A)
3
julia> findfirst(falses(3)) # returns nothing, but not printed in the REPL
julia> A = [false false; true false]
2×2 Matrix{Bool}:
0 0
1 0
julia> findfirst(A)
CartesianIndex(2, 1)Base.findfirst — Methodfindfirst(predicate::Function, A)Return the index or key of the first element of A for which predicate returns true. Return nothing if there is no such element.
Indices or keys are of the same type as those returned by keys(A) and pairs(A).
Examples
julia> A = [1, 4, 2, 2]
4-element Vector{Int64}:
1
4
2
2
julia> findfirst(iseven, A)
2
julia> findfirst(x -> x>10, A) # returns nothing, but not printed in the REPL
julia> findfirst(isequal(4), A)
2
julia> A = [1 4; 2 2]
2×2 Matrix{Int64}:
1 4
2 2
julia> findfirst(iseven, A)
CartesianIndex(2, 1)Base.findlast — Methodfindlast(A)Return the index or key of the last true value in A. Return nothing if there is no true value in A.
Indices or keys are of the same type as those returned by keys(A) and pairs(A).
See also: findfirst, findprev, findall.
Examples
julia> A = [true, false, true, false]
4-element Vector{Bool}:
1
0
1
0
julia> findlast(A)
3
julia> A = falses(2,2);
julia> findlast(A) # returns nothing, but not printed in the REPL
julia> A = [true false; true false]
2×2 Matrix{Bool}:
1 0
1 0
julia> findlast(A)
CartesianIndex(2, 1)Base.findlast — Methodfindlast(predicate::Function, A)Return the index or key of the last element of A for which predicate returns true. Return nothing if there is no such element.
Indices or keys are of the same type as those returned by keys(A) and pairs(A).
Examples
julia> A = [1, 2, 3, 4]
4-element Vector{Int64}:
1
2
3
4
julia> findlast(isodd, A)
3
julia> findlast(x -> x > 5, A) # returns nothing, but not printed in the REPL
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> findlast(isodd, A)
CartesianIndex(2, 1)Base.findnext — Methodfindnext(A, i)Find the next index after or including i of a true element of A, or nothing if not found.
Indices are of the same type as those returned by keys(A) and pairs(A).
Examples
julia> A = [false, false, true, false]
4-element Vector{Bool}:
0
0
1
0
julia> findnext(A, 1)
3
julia> findnext(A, 4) # returns nothing, but not printed in the REPL
julia> A = [false false; true false]
2×2 Matrix{Bool}:
0 0
1 0
julia> findnext(A, CartesianIndex(1, 1))
CartesianIndex(2, 1)Base.findnext — Methodfindnext(predicate::Function, A, i)Find the next index after or including i of an element of A for which predicate returns true, or nothing if not found.
Indices are of the same type as those returned by keys(A) and pairs(A).
Examples
julia> A = [1, 4, 2, 2];
julia> findnext(isodd, A, 1)
1
julia> findnext(isodd, A, 2) # returns nothing, but not printed in the REPL
julia> A = [1 4; 2 2];
julia> findnext(isodd, A, CartesianIndex(1, 1))
CartesianIndex(1, 1)Base.findprev — Methodfindprev(A, i)Find the previous index before or including i of a true element of A, or nothing if not found.
Indices are of the same type as those returned by keys(A) and pairs(A).
See also: findnext, findfirst, findall.
Examples
julia> A = [false, false, true, true]
4-element Vector{Bool}:
0
0
1
1
julia> findprev(A, 3)
3
julia> findprev(A, 1) # returns nothing, but not printed in the REPL
julia> A = [false false; true true]
2×2 Matrix{Bool}:
0 0
1 1
julia> findprev(A, CartesianIndex(2, 1))
CartesianIndex(2, 1)Base.findprev — Methodfindprev(predicate::Function, A, i)Find the previous index before or including i of an element of A for which predicate returns true, or nothing if not found.
Indices are of the same type as those returned by keys(A) and pairs(A).
Examples
julia> A = [4, 6, 1, 2]
4-element Vector{Int64}:
4
6
1
2
julia> findprev(isodd, A, 1) # returns nothing, but not printed in the REPL
julia> findprev(isodd, A, 3)
3
julia> A = [4 6; 1 2]
2×2 Matrix{Int64}:
4 6
1 2
julia> findprev(isodd, A, CartesianIndex(1, 2))
CartesianIndex(2, 1)Base.permutedims — Functionpermutedims(A::AbstractArray, perm)Permute the dimensions of array A. perm is a vector or a tuple of length ndims(A) specifying the permutation.
See also permutedims!, PermutedDimsArray, transpose, invperm.
Examples
julia> A = reshape(Vector(1:8), (2,2,2))
2×2×2 Array{Int64, 3}:
[:, :, 1] =
1 3
2 4
[:, :, 2] =
5 7
6 8
julia> perm = (3, 1, 2); # put the last dimension first
julia> B = permutedims(A, perm)
2×2×2 Array{Int64, 3}:
[:, :, 1] =
1 2
5 6
[:, :, 2] =
3 4
7 8
julia> A == permutedims(B, invperm(perm)) # the inverse permutation
trueFor each dimension i of B = permutedims(A, perm), its corresponding dimension of A will be perm[i]. This means the equality size(B, i) == size(A, perm[i]) holds.
julia> A = randn(5, 7, 11, 13);
julia> perm = [4, 1, 3, 2];
julia> B = permutedims(A, perm);
julia> size(B)
(13, 5, 11, 7)
julia> size(A)[perm] == ans
truepermutedims(m::AbstractMatrix)Permute the dimensions of the matrix m, by flipping the elements across the diagonal of the matrix. Differs from LinearAlgebra's transpose in that the operation is not recursive.
Examples
julia> a = [1 2; 3 4];
julia> b = [5 6; 7 8];
julia> c = [9 10; 11 12];
julia> d = [13 14; 15 16];
julia> X = [[a] [b]; [c] [d]]
2×2 Matrix{Matrix{Int64}}:
[1 2; 3 4] [5 6; 7 8]
[9 10; 11 12] [13 14; 15 16]
julia> permutedims(X)
2×2 Matrix{Matrix{Int64}}:
[1 2; 3 4] [9 10; 11 12]
[5 6; 7 8] [13 14; 15 16]
julia> transpose(X)
2×2 transpose(::Matrix{Matrix{Int64}}) with eltype Transpose{Int64, Matrix{Int64}}:
[1 3; 2 4] [9 11; 10 12]
[5 7; 6 8] [13 15; 14 16]permutedims(v::AbstractVector)Reshape vector v into a 1 × length(v) row matrix. Differs from LinearAlgebra's transpose in that the operation is not recursive.
Examples
julia> permutedims([1, 2, 3, 4])
1×4 Matrix{Int64}:
1 2 3 4
julia> V = [[[1 2; 3 4]]; [[5 6; 7 8]]]
2-element Vector{Matrix{Int64}}:
[1 2; 3 4]
[5 6; 7 8]
julia> permutedims(V)
1×2 Matrix{Matrix{Int64}}:
[1 2; 3 4] [5 6; 7 8]
julia> transpose(V)
1×2 transpose(::Vector{Matrix{Int64}}) with eltype Transpose{Int64, Matrix{Int64}}:
[1 3; 2 4] [5 7; 6 8]Base.permutedims! — Functionpermutedims!(dest, src, perm)Permute the dimensions of array src and store the result in the array dest. perm is a vector specifying a permutation of length ndims(src). The preallocated array dest should have size(dest) == size(src)[perm] and is completely overwritten. No in-place permutation is supported and unexpected results will happen if src and dest have overlapping memory regions.
See also permutedims.
Base.PermutedDimsArrays.PermutedDimsArray — TypePermutedDimsArray(A, perm) -> BGiven an AbstractArray A, create a view B such that the dimensions appear to be permuted. Similar to permutedims, except that no copying occurs (B shares storage with A).
See also permutedims, invperm.
Examples
julia> A = rand(3,5,4);
julia> B = PermutedDimsArray(A, (3,1,2));
julia> size(B)
(4, 3, 5)
julia> B[3,1,2] == A[1,2,3]
trueBase.promote_shape — Functionpromote_shape(s1, s2)Check two array shapes for compatibility, allowing trailing singleton dimensions, and return whichever shape has more dimensions.
Examples
julia> a = fill(1, (3,4,1,1,1));
julia> b = fill(1, (3,4));
julia> promote_shape(a,b)
(Base.OneTo(3), Base.OneTo(4), Base.OneTo(1), Base.OneTo(1), Base.OneTo(1))
julia> promote_shape((2,3,1,4), (2, 3, 1, 4, 1))
(2, 3, 1, 4, 1)数组函数
Base.accumulate — Functionaccumulate(op, A; dims::Integer, [init])Cumulative operation op along the dimension dims of A (providing dims is optional for vectors). An initial value init may optionally be provided by a keyword argument. See also accumulate! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).
For common operations there are specialized variants of accumulate, see cumsum, cumprod. For a lazy version, see Iterators.accumulate.
accumulate on a non-array iterator requires at least Julia 1.5.
Examples
julia> accumulate(+, [1,2,3])
3-element Vector{Int64}:
1
3
6
julia> accumulate(min, (1, -2, 3, -4, 5), init=0)
(0, -2, -2, -4, -4)
julia> accumulate(/, (2, 4, Inf), init=100)
(50.0, 12.5, 0.0)
julia> accumulate(=>, i^2 for i in 1:3)
3-element Vector{Any}:
1
1 => 4
(1 => 4) => 9
julia> accumulate(+, fill(1, 3, 4))
3×4 Matrix{Int64}:
1 4 7 10
2 5 8 11
3 6 9 12
julia> accumulate(+, fill(1, 2, 5), dims=2, init=100.0)
2×5 Matrix{Float64}:
101.0 102.0 103.0 104.0 105.0
101.0 102.0 103.0 104.0 105.0Base.accumulate! — Functionaccumulate!(op, B, A; [dims], [init])Cumulative operation op on A along the dimension dims, storing the result in B. Providing dims is optional for vectors. If the keyword argument init is given, its value is used to instantiate the accumulation.
Behavior can be unexpected when any mutated argument shares memory with any other argument.
See also accumulate, cumsum!, cumprod!.
Examples
julia> x = [1, 0, 2, 0, 3];
julia> y = rand(5);
julia> accumulate!(+, y, x);
julia> y
5-element Vector{Float64}:
1.0
1.0
3.0
3.0
6.0
julia> A = [1 2 3; 4 5 6];
julia> B = similar(A);
julia> accumulate!(-, B, A, dims=1)
2×3 Matrix{Int64}:
1 2 3
-3 -3 -3
julia> accumulate!(*, B, A, dims=2, init=10)
2×3 Matrix{Int64}:
10 20 60
40 200 1200Base.cumprod — Functioncumprod(A; dims::Integer)Cumulative product along the dimension dim. See also cumprod! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).
Examples
julia> a = Int8[1 2 3; 4 5 6];
julia> cumprod(a, dims=1)
2×3 Matrix{Int64}:
1 2 3
4 10 18
julia> cumprod(a, dims=2)
2×3 Matrix{Int64}:
1 2 6
4 20 120cumprod(itr)Cumulative product of an iterator.
See also cumprod!, accumulate, cumsum.
cumprod on a non-array iterator requires at least Julia 1.5.
Examples
julia> cumprod(fill(1//2, 3))
3-element Vector{Rational{Int64}}:
1//2
1//4
1//8
julia> cumprod((1, 2, 1, 3, 1))
(1, 2, 2, 6, 6)
julia> cumprod("julia")
5-element Vector{String}:
"j"
"ju"
"jul"
"juli"
"julia"Base.cumprod! — Functioncumprod!(B, A; dims::Integer)Cumulative product of A along the dimension dims, storing the result in B. See also cumprod.
Behavior can be unexpected when any mutated argument shares memory with any other argument.
cumprod!(y::AbstractVector, x::AbstractVector)Cumulative product of a vector x, storing the result in y. See also cumprod.
Behavior can be unexpected when any mutated argument shares memory with any other argument.
Base.cumsum — Functioncumsum(A; dims::Integer)Cumulative sum along the dimension dims. See also cumsum! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).
Examples
julia> a = [1 2 3; 4 5 6]
2×3 Matrix{Int64}:
1 2 3
4 5 6
julia> cumsum(a, dims=1)
2×3 Matrix{Int64}:
1 2 3
5 7 9
julia> cumsum(a, dims=2)
2×3 Matrix{Int64}:
1 3 6
4 9 15The return array's eltype is Int for signed integers of less than system word size and UInt for unsigned integers of less than system word size. To preserve eltype of arrays with small signed or unsigned integer accumulate(+, A) should be used.
julia> cumsum(Int8[100, 28])
2-element Vector{Int64}:
100
128
julia> accumulate(+,Int8[100, 28])
2-element Vector{Int8}:
100
-128In the former case, the integers are widened to system word size and therefore the result is Int64[100, 128]. In the latter case, no such widening happens and integer overflow results in Int8[100, -128].
cumsum(itr)Cumulative sum of an iterator.
See also accumulate to apply functions other than +.
cumsum on a non-array iterator requires at least Julia 1.5.
Examples
julia> cumsum(1:3)
3-element Vector{Int64}:
1
3
6
julia> cumsum((true, false, true, false, true))
(1, 1, 2, 2, 3)
julia> cumsum(fill(1, 2) for i in 1:3)
3-element Vector{Vector{Int64}}:
[1, 1]
[2, 2]
[3, 3]Base.cumsum! — Functioncumsum!(B, A; dims::Integer)Cumulative sum of A along the dimension dims, storing the result in B. See also cumsum.
Behavior can be unexpected when any mutated argument shares memory with any other argument.
Base.diff — Functiondiff(A::AbstractVector)
diff(A::AbstractArray; dims::Integer)Finite difference operator on a vector or a multidimensional array A. In the latter case the dimension to operate on needs to be specified with the dims keyword argument.
diff for arrays with dimension higher than 2 requires at least Julia 1.1.
Examples
julia> a = [2 4; 6 16]
2×2 Matrix{Int64}:
2 4
6 16
julia> diff(a, dims=2)
2×1 Matrix{Int64}:
2
10
julia> diff(vec(a))
3-element Vector{Int64}:
4
-2
12Base.repeat — Functionrepeat(A::AbstractArray, counts::Integer...)Construct an array by repeating array A a given number of times in each dimension, specified by counts.
See also: fill, Iterators.repeated, Iterators.cycle.
Examples
julia> repeat([1, 2, 3], 2)
6-element Vector{Int64}:
1
2
3
1
2
3
julia> repeat([1, 2, 3], 2, 3)
6×3 Matrix{Int64}:
1 1 1
2 2 2
3 3 3
1 1 1
2 2 2
3 3 3repeat(A::AbstractArray; inner=ntuple(Returns(1), ndims(A)), outer=ntuple(Returns(1), ndims(A)))Construct an array by repeating the entries of A. The i-th element of inner specifies the number of times that the individual entries of the i-th dimension of A should be repeated. The i-th element of outer specifies the number of times that a slice along the i-th dimension of A should be repeated. If inner or outer are omitted, no repetition is performed.
Examples
julia> repeat(1:2, inner=2)
4-element Vector{Int64}:
1
1
2
2
julia> repeat(1:2, outer=2)
4-element Vector{Int64}:
1
2
1
2
julia> repeat([1 2; 3 4], inner=(2, 1), outer=(1, 3))
4×6 Matrix{Int64}:
1 2 1 2 1 2
1 2 1 2 1 2
3 4 3 4 3 4
3 4 3 4 3 4repeat(s::AbstractString, r::Integer)Repeat a string r times. This can be written as s^r.
See also ^.
Examples
julia> repeat("ha", 3)
"hahaha"repeat(c::AbstractChar, r::Integer) -> StringRepeat a character r times. This can equivalently be accomplished by calling c^r.
Examples
julia> repeat('A', 3)
"AAA"Base.rot180 — Functionrot180(A)Rotate matrix A 180 degrees.
Examples
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rot180(a)
2×2 Matrix{Int64}:
4 3
2 1rot180(A, k)Rotate matrix A 180 degrees an integer k number of times. If k is even, this is equivalent to a copy.
Examples
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rot180(a,1)
2×2 Matrix{Int64}:
4 3
2 1
julia> rot180(a,2)
2×2 Matrix{Int64}:
1 2
3 4Base.rotl90 — Functionrotl90(A)Rotate matrix A left 90 degrees.
Examples
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rotl90(a)
2×2 Matrix{Int64}:
2 4
1 3rotl90(A, k)Left-rotate matrix A 90 degrees counterclockwise an integer k number of times. If k is a multiple of four (including zero), this is equivalent to a copy.
Examples
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rotl90(a,1)
2×2 Matrix{Int64}:
2 4
1 3
julia> rotl90(a,2)
2×2 Matrix{Int64}:
4 3
2 1
julia> rotl90(a,3)
2×2 Matrix{Int64}:
3 1
4 2
julia> rotl90(a,4)
2×2 Matrix{Int64}:
1 2
3 4Base.rotr90 — Functionrotr90(A)Rotate matrix A right 90 degrees.
Examples
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rotr90(a)
2×2 Matrix{Int64}:
3 1
4 2rotr90(A, k)Right-rotate matrix A 90 degrees clockwise an integer k number of times. If k is a multiple of four (including zero), this is equivalent to a copy.
Examples
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rotr90(a,1)
2×2 Matrix{Int64}:
3 1
4 2
julia> rotr90(a,2)
2×2 Matrix{Int64}:
4 3
2 1
julia> rotr90(a,3)
2×2 Matrix{Int64}:
2 4
1 3
julia> rotr90(a,4)
2×2 Matrix{Int64}:
1 2
3 4Base.mapslices — Functionmapslices(f, A; dims)Transform the given dimensions of array A by applying a function f on each slice of the form A[..., :, ..., :, ...], with a colon at each d in dims. The results are concatenated along the remaining dimensions.
For example, if dims = [1,2] and A is 4-dimensional, then f is called on x = A[:,:,i,j] for all i and j, and f(x) becomes R[:,:,i,j] in the result R.
See also eachcol or eachslice, used with map or stack.
Examples
julia> A = reshape(1:30,(2,5,3))
2×5×3 reshape(::UnitRange{Int64}, 2, 5, 3) with eltype Int64:
[:, :, 1] =
1 3 5 7 9
2 4 6 8 10
[:, :, 2] =
11 13 15 17 19
12 14 16 18 20
[:, :, 3] =
21 23 25 27 29
22 24 26 28 30
julia> f(x::Matrix) = fill(x[1,1], 1,4); # returns a 1×4 matrix
julia> B = mapslices(f, A, dims=(1,2))
1×4×3 Array{Int64, 3}:
[:, :, 1] =
1 1 1 1
[:, :, 2] =
11 11 11 11
[:, :, 3] =
21 21 21 21
julia> f2(x::AbstractMatrix) = fill(x[1,1], 1,4);
julia> B == stack(f2, eachslice(A, dims=3))
true
julia> g(x) = x[begin] // x[end-1]; # returns a number
julia> mapslices(g, A, dims=[1,3])
1×5×1 Array{Rational{Int64}, 3}:
[:, :, 1] =
1//21 3//23 1//5 7//27 9//29
julia> map(g, eachslice(A, dims=2))
5-element Vector{Rational{Int64}}:
1//21
3//23
1//5
7//27
9//29
julia> mapslices(sum, A; dims=(1,3)) == sum(A; dims=(1,3))
trueNotice that in eachslice(A; dims=2), the specified dimension is the one without a colon in the slice. This is view(A,:,i,:), whereas mapslices(f, A; dims=(1,3)) uses A[:,i,:]. The function f may mutate values in the slice without affecting A.
Base.eachrow — Functioneachrow(A::AbstractVecOrMat) <: AbstractVectorCreate a RowSlices object that is a vector of rows of matrix or vector A. Row slices are returned as AbstractVector views of A.
For the inverse, see stack(rows; dims=1).
See also eachcol, eachslice and mapslices.
This function requires at least Julia 1.1.
Prior to Julia 1.9, this returned an iterator.
Example
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> s = eachrow(a)
2-element RowSlices{Matrix{Int64}, Tuple{Base.OneTo{Int64}}, SubArray{Int64, 1, Matrix{Int64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}}:
[1, 2]
[3, 4]
julia> s[1]
2-element view(::Matrix{Int64}, 1, :) with eltype Int64:
1
2Base.eachcol — Functioneachcol(A::AbstractVecOrMat) <: AbstractVectorCreate a ColumnSlices object that is a vector of columns of matrix or vector A. Column slices are returned as AbstractVector views of A.
For the inverse, see stack(cols) or reduce(hcat, cols).
See also eachrow, eachslice and mapslices.
This function requires at least Julia 1.1.
Prior to Julia 1.9, this returned an iterator.
Example
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> s = eachcol(a)
2-element ColumnSlices{Matrix{Int64}, Tuple{Base.OneTo{Int64}}, SubArray{Int64, 1, Matrix{Int64}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64}, true}}:
[1, 3]
[2, 4]
julia> s[1]
2-element view(::Matrix{Int64}, :, 1) with eltype Int64:
1
3Base.eachslice — Functioneachslice(A::AbstractArray; dims, drop=true)Create a Slices object that is an array of slices over dimensions dims of A, returning views that select all the data from the other dimensions in A. dims can either by an integer or a tuple of integers.
If drop = true (the default), the outer Slices will drop the inner dimensions, and the ordering of the dimensions will match those in dims. If drop = false, then the Slices will have the same dimensionality as the underlying array, with inner dimensions having size 1.
See stack(slices; dims) for the inverse of eachslice(A; dims::Integer).
See also eachrow, eachcol, mapslices and selectdim.
This function requires at least Julia 1.1.
Prior to Julia 1.9, this returned an iterator, and only a single dimension dims was supported.
Example
julia> m = [1 2 3; 4 5 6; 7 8 9]
3×3 Matrix{Int64}:
1 2 3
4 5 6
7 8 9
julia> s = eachslice(m, dims=1)
3-element RowSlices{Matrix{Int64}, Tuple{Base.OneTo{Int64}}, SubArray{Int64, 1, Matrix{Int64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}}:
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
julia> s[1]
3-element view(::Matrix{Int64}, 1, :) with eltype Int64:
1
2
3
julia> eachslice(m, dims=1, drop=false)
3×1 Slices{Matrix{Int64}, Tuple{Int64, Colon}, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}, SubArray{Int64, 1, Matrix{Int64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}, 2}:
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]组合学
Base.invperm — Functioninvperm(v)Return the inverse permutation of v. If B = A[v], then A == B[invperm(v)].
See also sortperm, invpermute!, isperm, permutedims.
Examples
julia> p = (2, 3, 1);
julia> invperm(p)
(3, 1, 2)
julia> v = [2; 4; 3; 1];
julia> invperm(v)
4-element Vector{Int64}:
4
1
3
2
julia> A = ['a','b','c','d'];
julia> B = A[v]
4-element Vector{Char}:
'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)
'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
julia> B[invperm(v)]
4-element Vector{Char}:
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)
'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)Base.isperm — Functionisperm(v) -> BoolReturn true if v is a valid permutation.
Examples
julia> isperm([1; 2])
true
julia> isperm([1; 3])
falseBase.permute! — Methodpermute!(v, p)Permute vector v in-place, according to permutation p. No checking is done to verify that p is a permutation.
To return a new permutation, use v[p]. This is generally faster than permute!(v, p); it is even faster to write into a pre-allocated output array with u .= @view v[p]. (Even though permute! overwrites v in-place, it internally requires some allocation to keep track of which elements have been moved.)
Behavior can be unexpected when any mutated argument shares memory with any other argument.
See also invpermute!.
Examples
julia> A = [1, 1, 3, 4];
julia> perm = [2, 4, 3, 1];
julia> permute!(A, perm);
julia> A
4-element Vector{Int64}:
1
4
3
1Base.invpermute! — Functioninvpermute!(v, p)Like permute!, but the inverse of the given permutation is applied.
Note that if you have a pre-allocated output array (e.g. u = similar(v)), it is quicker to instead employ u[p] = v. (invpermute! internally allocates a copy of the data.)
Behavior can be unexpected when any mutated argument shares memory with any other argument.
Examples
julia> A = [1, 1, 3, 4];
julia> perm = [2, 4, 3, 1];
julia> invpermute!(A, perm);
julia> A
4-element Vector{Int64}:
4
1
3
1Base.reverse — Methodreverse(A; dims=:)Reverse A along dimension dims, which can be an integer (a single dimension), a tuple of integers (a tuple of dimensions) or : (reverse along all the dimensions, the default). See also reverse! for in-place reversal.
Examples
julia> b = Int64[1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> reverse(b, dims=2)
2×2 Matrix{Int64}:
2 1
4 3
julia> reverse(b)
2×2 Matrix{Int64}:
4 3
2 1Prior to Julia 1.6, only single-integer dims are supported in reverse.
Base.reverseind — Functionreverseind(v, i)Given an index i in reverse(v), return the corresponding index in v so that v[reverseind(v,i)] == reverse(v)[i]. (This can be nontrivial in cases where v contains non-ASCII characters.)
Examples
julia> s = "Julia🚀"
"Julia🚀"
julia> r = reverse(s)
"🚀ailuJ"
julia> for i in eachindex(s)
print(r[reverseind(r, i)])
end
Julia🚀Base.reverse! — Functionreverse!(v [, start=firstindex(v) [, stop=lastindex(v) ]]) -> vIn-place version of reverse.
Examples
julia> A = Vector(1:5)
5-element Vector{Int64}:
1
2
3
4
5
julia> reverse!(A);
julia> A
5-element Vector{Int64}:
5
4
3
2
1reverse!(A; dims=:)Like reverse, but operates in-place in A.
Multidimensional reverse! requires Julia 1.6.